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Abstract
The main aims of this paper are: (i) to present molecular dynamics (MD) results
for time correlation functions, calculated with the help of a new symplectic
algorithm that was proposed by us recently; (ii) to discuss the results obtained
with the main focus on the interplay between the spin and liquid subsystems as
well as on the influence of an external magnetic field on the properties of the
system considered; (iii) to compare the time correlation functions, calculated
in MD simulations, with theoretical predictions. Our results provide evidence
of the interesting interplay of the two subsystems, causing new phenomena not
found in nonmagnetic fluids and magnetic lattice models.

1. Introduction

One of the simplest models of a continuous system exhibiting ferromagnetic behaviour is a
spin fluid with an isotropic Heisenberg-like interaction between spin degrees of freedom [1, 2].
Because of its simplicity as well as its very specific features, the theoretical study of both static
and dynamical properties for this model are of general interest and can be considered as a test
for any theory developed for an inhomogeneous liquid, by comparison with results of computer
simulations. On the other hand, the Heisenberg model ferrofluid is of interest in its own right.
Recently, it was demonstrated [3] that a Co80Pd20 melt can be undercooled below its Curie
temperature. Hence, the first evidence of a ferromagnetic behaviour in a liquid metal was
obtained under conditions where the Heisenberg exchange interaction absolutely dominates
over the contribution of the magnetic dipole–dipole interaction.

The different phase diagrams of the continuum Heisenberg model, depending on the ratio
of the strength of the exchange interaction to the spin-independent interaction, have been
established within mean-field-like theory [1, 4–6] and using methods of integral equations or
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density functional theory [5–7]. More quantitative results have been obtained from Monte
Carlo simulations [7, 8] for the case where the spin-independent interaction is of the hard-
sphere type.

Until recently, the theoretical description of magnetic liquid dynamics was based to a
great extent on phenomenological approaches (see, e.g., [9–12]). However, some of the
results obtained in different approaches were contradictory. For example, one may note that
the expressions for the sound velocity found within two main groups of phenomenological
theories differ even qualitatively [11]. Hence, study of the hydrodynamic behaviour using a
systematic rigorous statistical treatment of the problem became unavoidable.

In the series of our previous papers [13–15] the spectrum of hydrodynamic collective
modes for an isotropic Heisenberg-like model of a ferrofluid at constant external magnetic
field has been studied. In [13] we used a rigorous microscopic treatment for deriving the
generalized transport equations and equations for the time correlation functions (TCFs). These
equations were then analysed in the hydrodynamic limit [14] and explicit expressions for
the static correlation functions in relation to the well-known thermodynamic quantities as
well as expressions for the transport coefficients have been derived. These results were used
for the calculation of the hydrodynamic collective mode spectrum [14] and the derivation of
analytical expressions for all the hydrodynamic TCFs, constructed on the basis of the conserved
dynamical variables [15]. We emphasize that the expressions obtained are asymptotically exact
in the small-(k, ω) limit, and all input parameters in such expressions are just thermodynamic
quantities and hydrodynamic transport coefficients, so these results have a wider range of
application than just the Heisenberg ferrofluid.

The goal of this paper is to discuss in more detail the specific features of the dynamical
behaviour of a Heisenberg spin fluid. To achieve this goal, we performed molecular
dynamics (MD) simulations and calculated the correlation functions of interest. We finally
compare the results obtained with the predictions of theory.

2. Theory and computer simulations

We consider a classical system composed of N magnetic particles of mass m, described by the
Hamiltonian

H =
N∑

i=1

mvi
2

2
+

N∑
i< j

[V (ri j ) − J (ri j)si · s j ] − h
N∑

i=1

sz
i , (1)

where ri and vi are the translational position and velocity, respectively, of particle i carrying
spin si . The liquid potential is denoted by V (ri j ), and J (ri j) > 0 is the exchange integral
for a pair of spins with interparticle distance ri j . The classical approach treats si as a three-
component continuous vector with a fixed length for each site i . We put for convenience
|si | = 1, so J is measured in energy units. The last term in (1) describes the interaction with
an external homogeneous magnetic field h.

Because the exchange integral J (ri j) depends on an interparticle distance ri j , one can
expect a strong influence of the spin subsystem on liquid properties of the model (1). For
instance, in [16] it has been shown that the position of the ‘gas–liquid’ critical point depends
on the value of an external magnetic field. More recently, this problem has been studied in
detail in the papers [17–19]. One of our previous findings [15] was the prediction of a strong
dynamic interplay between the spin and translational degrees of freedom in the spin ordered
phase, which can be observed as the appearance of side sound-like peaks in the magnetic
dynamic structure factor. In particular, this prediction was validated in our recent paper [20],
where TCFs of the model (1) were studied in the ferromagnetic state using MD simulations.
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The most interesting TCFs are the ‘density–density’ Fnn(k, t) and ‘spin density–spin
density’ Fαβ

mm(k, t) TCFs. The Fourier transform of the first one gives us the dynamic structure
factor S(k, ω), and the second function could be related to the magnetic dynamic structure
factor Sm(k, ω). To be more explicit we have to note that, because of the coupling between
spin and liquid subsystems, Sm(k, ω) is expressed via the Fourier transform of TCF Fss(k, t),
where the dynamic variable ŝk can be written as a linear combination of two density operators,
namely, the z-component of the spin density m̂z

k and the particle number density n̂k (see,
e.g., [14, 15]). In the hydrodynamic limit for Fnn(k, t) and Fss(k, t) the following explicit
expressions can be used:

F H
nn(k, t)/Fnn(k) =

∑
α

Gnn
α (k) exp{−zα(k)t},

F H
ss (k, t)/Fss (k) =

∑
α

Gss
α (k) exp{−zα(k)t}, (2)

where the subscript α labels the types of hydrodynamiccollective excitation (α = {+,−, h, m}
corresponds to a pair of complex-conjugated sound excitations (=, −) heat (h) and spin
(m) diffusion modes); Gnn

α and Gss
α denote the weight coefficients, describing the αth-mode

contribution to a relative TCF. Explicit expressions for the weight coefficient as well as for
the Landau–Placzek ratios can be found in [15]. The most important point for our following
discussion is that, if h �= 0 or the fluid is in its ferromagnetic phase, the contributions from
sound modes to the function F H

ss (k, t) are nonzero. In particular, we found that

Gss
± = 1

2

(1 − δT )

γm

{
1 ∓ ik

bss

vs

}
, (3)

where vs , δT = κT,m/κT,h , and γm = CP,m/CV,m are the sound velocity and ratios of the
isothermal compressibilities and the specific heats, defined in different ensembles, respectively.
The value of bss depends on thermodynamic quantities and transport coefficients (for details
see, e.g., [15]) and describes asymmetric contributions to the hydrodynamic TCF F H

ss (k, t).
Note that in the paramagnetic case, when h = 0, one has δT = 1, so the hydrodynamic sound
modes do not contribute to F H

nn(k, t).
In our MD study of the Heisenberg fluid, we have used [20] the Yukawa potential,

J (r) = (εσ/r) exp[(σ − r)/σ ],

and a soft-core potential,

V (r) =
{

4ε[(σ/r)12 − (σ/r)6] + ε, if r < 21/6σ

0, if r > 21/6σ ,

for the description of spin and liquid interactions with the intensities ε and ε, respectively.
The function J (r) was truncated at R = 2.5σ and shifted to be zero at the truncation point to
avoid force singularities. The simulations were carried out for N = 864 particles (employing
periodic boundary conditions) at a reduced density n∗ = Nσ 3/V = 0.6, a reduced core
intensity ε/ε = 1, and a dynamical coupling parameter d = σ(mε)1/2/h̄ = 2. This last
parameter is, in fact, the ratio τtr/τs , where τtr = σ(m/ε)1/2 and τs = h̄/ε are the characteristic
time intervals of varying translational and spin variables, respectively. At the fixed density n∗,
we have considered three thermodynamic points in our calculations,namely: the ferromagnetic
phase (A) with a reduced temperature T ∗ = kB T/ε = 1.5 < T ∗

c and at zero magnetic field
h = 0; the paramagnetic phase (B) with a reduced temperature T ∗ = kB T/ε = 2.475 > T ∗

c
and at zero magnetic field h = 0; and the state (C) with spins ordered by a nonzero external
field h∗ = h/ε = 2.00 at T ∗ = kB T/ε = 2.479 > T ∗

c . (Here, T ∗
c � 2.06 denotes the

temperature of the ferromagnetic phase transition [21].) The results, obtained for the point (A)
were partly reported in [20].
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Figure 1. The normalized ‘density–density’ TCF �nn(k, t) = Fnn(k, t)/Fnn(k) obtained in the
MD simulations for four values of the wavenumber: (a) k = kmin ; (b) k = 2kmin ; (c) k = 4kmin ;
(d) k = 10kmin . kmin = 2π/V 1/3 denotes the value of a minimal wavenumber achieved in our
MD study. Results obtained for the case h �= 0 are shown by the dashed curves.

MD simulations have been performed with the help of a new symplectic time-reversible
algorithm [20], developed recently for numerical integration of the equations of motion in
magnetic liquids. This algorithm exactly conserves spin lengths, is stable, and can be used
with much larger time steps than those inherent in standard predictor–corrector schemes.

3. Results and discussion

From the MD run we can obtain the positions ri (t), the velocities vi(t), and the values of spins
si (t) at times t fixed by the condition t = nτ with n = 1, 2, . . . , nmax . This allows one to
calculate all the quantities needed. For instance, if one defines dynamic variables

n̂k(t) = 1√
N

N∑
i=1

exp(ik · ri(t)), m̂α
k(t) = 1√

N

N∑
i=1

sα
i (t) exp(ik · ri(t)), (4)

being the particle number density and spin densities, respectively, we can construct on the
basis of these several correlation functions that are commonly of interest both for theory and
computer simulations.

Note that in the case of a nonzero value of an external field one has to distinguish the
component m̂z

k, describing the fluctuations along the direction of a magnetic field h, and the
transverse components m̂(t)

k ≡ m̂x
k ≡ m̂ y

k. In the case h = 0, all the components are equivalent
because of the magnetic isotropy of the system.
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Figure 2. The normalized ‘spin density–spin density’ TCF �ss(k, t) = Fss(k, t)/Fss (k) obtained
in the MD simulations for four values of the wavenumber k. Results found for a paramagnetic case
(the point (B)) are shown by bolder solid curves.

In [14, 15] we have derived a few useful relations that can be used as definitions of
generalized k-dependent thermodynamic quantities. For example, the generalized magnetic
susceptibility χT,n(k) per particle can be introduced as follows:

fss(k) = 〈ŝk ŝ−k〉 = 1

β
χT,n(k)|k→0 → 1

β
χT,n = kB T χT,n, (5)

where ŝk = m̂z
k− f l

mn(k)/ fnn(k)n̂k is the spin density, orthogonalized with respect to n̂k. In fact,
the expression (5) may be considered as an example of a generalized thermodynamic relation,
well known in the theory of simple liquids [22]. Equilibrium TCFs Fab(k, t), constructed on
the basis of the dynamic variables (4), can be calculated from the standard definition, namely,
Fab(k, t) = 〈âk(t)b̂−k(0)〉.

In figure 1 the numerical results for the normalized ‘density–density’ TCF �nn(k, t) =
Fnn(k, t)/Fnn(k), calculated at the thermodynamic points (B) (solid curves) and (C) (dashed
curves), are presented. It is clearly seen that for small wavenumbers sound excitations are
well defined and produce the oscillating behaviour of this function like for other simple fluids.
Under the influence of an external field, the frequency of the sound modes is slightly shifted,
and the corresponding functions go above the curves obtained for h = 0. This means that the
integrated intensity of the central Rayleigh peak in the dynamic structural factor increases if
the external field is nonzero, which is in agreement with our prediction [15].

Another kind of result can be observed for the normalized ‘spin density–spin density’ TCF
�ss(k, t) = Fss(k, t)/Fss(k) (see figure 2). As far as one can judge from figure 2, in this case
an external field changes the time dependence of Fss(k, t) crucially and as a result we see:
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(i) the appearance due to anisotropy of two components of spin fluctuations with different
time behaviour (the transverse FT

ss (k, t) and longitudinal F L
ss(k, t) functions are shown in

figure 2 by dashed and thin solid curves);
(ii) oscillating behaviour of F L

ss(k, t) at small wavenumbers k with time periods close to those
observed for Fnn(k, t) (compare with figure 1).

These results, together with the calculations performed for the ferromagnetic case (A)
(see [20]), have already demonstrated the interesting dynamic interplay between liquid and
spin subsystems in a Heisenberg ferrofluid. A more complete presentation of our results
(including the investigation of the collective mode spectrum and the calculations of the weight
coefficients) will be given in a future paper [23].
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